Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription
نویسندگان
چکیده
The yeast RNA/DNA helicase Sen1, Senataxin in human, preserves the integrity of replication forks encountering transcription by removing RNA-DNA hybrids. Here we show that, in sen1 mutants, when a replication fork clashes head-on with transcription is arrested and, as a consequence, the progression of the sister fork moving in the opposite direction within the same replicon is also impaired. Therefore, sister forks remain coupled when one of the two forks is arrested by transcription, a fate different from that experienced by forks encountering Double Strand Breaks. We also show that dormant origins of replication are activated to ensure DNA synthesis in the proximity to the forks arrested by transcription. Dormant origin firing is not inhibited by the replication checkpoint, rather dormant origins are fired if they cannot be timely inactivated by passive replication. In sen1 mutants, the Mre11 and Mrc1-Ctf4 complexes protect the forks arrested by transcription from processing mediated by the Exo1 nuclease. Thus, a harmless head-on replication-transcription clash resolution requires the fine-tuning of origin firing and coordination among Sen1, Exo1, Mre11 and Mrc1-Ctf4 complexes.
منابع مشابه
A model for DNA replication showing how dormant origins safeguard against replication fork failure
Replication origins are 'licensed' for a single initiation event before entry into S phase; however, many licensed replication origins are not used, but instead remain dormant. The use of these dormant origins helps cells to survive replication stresses that block replication fork movement. Here, we present a computer model of the replication of a typical metazoan origin cluster in which origin...
متن کاملReplicon Dynamics, Dormant Origin Firing, and Terminal Fork Integrity after Double-Strand Break Formation
In response to replication stress, the Mec1/ATR and SUMO pathways control stalled- and damaged-fork stability. We investigated the S phase response at forks encountering a broken template (termed the terminal fork). We show that double-strand break (DSB) formation can locally trigger dormant origin firing. Irreversible fork resolution at the break does not impede progression of the other fork i...
متن کاملA concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression
Accumulating evidence suggests that dormant DNA replication origins play an important role in the recovery of stalled forks. However, their functional interactions with other fork recovery mechanisms have not been tested. We previously reported intrinsic activation of the Fanconi anemia (FA) pathway in a tumor-prone mouse model (Mcm4chaos3) with a 60% loss of dormant origins. To understand this...
متن کاملControlling DNA replication origins in response to DNA damage - inhibit globally, activate locally.
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each ...
متن کاملIno80 Chromatin Remodeling Complex Promotes Recovery of Stalled Replication Forks
BACKGROUND Chromatin remodeling complexes facilitate the access of enzymes that mediate transcription, replication or repair of DNA by modulating nucleosome position and/or composition. Ino80 is the DNA-dependent Snf2-like ATPase subunit of a complex whose nucleosome remodeling activity requires actin-related proteins, Arp4, Arp5 and Arp8, as well as two RuvB-like DNA helicase subunits. Budding...
متن کامل